
Reimplementing Reifiers for OCanren
Using the “Lightweight Higher-kinded

Polymorphism” Technique
Li Yue

Programming Languages and Tools Lab

JetBrains Research

December 2021

1

Reimplementing Reifiers for OCanren Using the “Lightweight Higher-kinded
Polymorphism” Technique

An overview

• Background: OCanren, injection and reification.

• Problem: The current implementation is unscalable due to the need for a predefined set of
functors.

• Reason: The lack of higher-kinded polymorphism in OCaml necessitates the use of
functors. Replacing functors by higher-kinded polymorphic functions would make the code
less cumbersome.

• Approach: “Lightweight Higher-kinded Polymorphism” and its application to the problem.

• Result: The technique is applicable and eliminates the old functors. But a new set of
predefined functors is added.

• Limitation: Scalability problem for OCaml is hard. We didn’t solve it, other people neither.

2

Background: OCanren, injection and reification

3

• If y:var and z:var then

• Cons(y,Nil):(var,(‘a,‘b)list’)list’

• Cons(2,z) :(int,var)list’

• Cons(y,Nil) and Cons(2,z) are OCanren lists,
implemented in OCaml as

type (‘a,‘b) list = Nil | Cons of ‘a * ‘b
type var

Injection:
OCaml sees two incompatible

types. By injection (safe type cast
using unsafe OCaml features),

both take the type of logical list
of logical integer.

Reification:
Parsing an OCanren value to an

AST.

• Cons(2,z) reifies to Val(Cons(Val 2,Var id_z))
• Cons(y,Nil) reifies to Val(Cons(Var id_y, Val Nil))

Problem: Reification requires a predefined set of
functors, hindering scalability

4

• Full scalability requires as many
predefined functors as the number of
possible type parameters for a type
constructor.

• The current OCaml implementation
supports tuple of up to 4194303
elements. OCanren implementers
cannot afford to write this much
functors.

• The problem with functors is twofold:

• the duplication, and

• functors themselves are

cumbersomeA predefined set of functors
strategic tactical

Problem Analysis

We work with
this now

Reason: Lack of higher-kinded polymorphism

• “Lower-kinded” polymorphism is abstraction over type parameters.

• e.g. int list, bool list, char list —> ‘a list

• Higher-kinded polymorphism is abstraction over type constructors.

• e.g. int list, int tree, int option —> int ‘b

5

Reason: Lack of higher-kinded polymorphism

• OCaml doesn’t allow a type variable to occur in the position of a type
constructor, lacking higher-kinded polymorphism.

• e.g. OCaml rejects map: (‘a -> ‘b)-> ‘a ‘c -> ‘b ‘c

• OCaml uses functors to realize some effect of higher-kinded
polymorphism.

• We may make the reifiers implementation less cumbersome if we can just
replace the set of functors by a set of higher-kinded polymorphic
functions.

6

Approach: Lightweight higher-kinded
polymorphism

• Lightweight Higher-Kinded Polymorphism Jeremy Yallop and Leo White,
Functional and Logic Programming 2014

• Encode ‘a‘b as (‘a, ‘b)app. The first ‘b is higher-kinded, the next ‘b
is lower-kinded.

• e.g. (‘a -> ‘b)-> ‘a ‘c -> ‘b ‘c becomes(‘a -> ‘b) ->
(‘a,‘c)app -> (‘b,‘c)app

7

Result: The technique is applicable

• We can now define the reifiers as a set of higher-kinded polymorphic
functions typed using the “lightweight” technique, instead of as a set of
functors.

• The lightweight higher-kinded polymorphism technique is itself
implemented with a predefined set of functors, therefore the scalability
problem is not solved, but it is known to be hard and neither other people
solved it.

8

Thanks !

