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Introduction

Context First-order Horn clause logic programming.

Goal Detecting non-termination by coinductive proof.

State of the Art Heuristic algorithms

1. Coinductive Logic Programming
2. Proof Relevant Corecursive Resolution

Open Problems The heuristic algorithms:

1. have limits, and
2. do not have proof theoretic foundation.

We Propose: Coinductive Uniform Proof

I A principled approach to the Goal.

I A proof theoretic foundation for the heuristic algorithms.

I Breaking through the limits of the heuristic algorithms.
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Background: Fixed-point Models (aka Herbrand
Models)

I Given a first-order Horn clause logic program P, in classical
logic:

I The least fixed-point model contains all finite terms that can
be proved to be true w.r.t P.

I The greatest fixed-point model contains all finite and infinite
terms that cannot be proved to be false (i.e. either true or
non-terminating) w.r.t P.

Example

I Clauses nat 0 and ∀x . nat x → nat (s x) intend to define the
set N of all non-negative integers.

I A typical n ∈ N has the form s − · · · − s − 0.

I The least fixed point model is Mµ = {nat n | n ∈ N} .

I The greatest fixed-point model is Mν = Mµ ∪ {nat ω}
I . . . where ω is the infinite term s − s − s − · · · .
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Background: Coinductive Logic Programming
(CoLP)

I Created by Gopal Gupta et al in 2006

I A goal succeeds if it unifies a previous goal (no occurs check)

I Being sound w.r.t. the greatest fixed-point model.

Example

I Consider the program: ∀x . zeros x → zeros [0 | x ]
I SLD-derivation ( ): zeros x  zeros x ′  · · ·
Result [0 | x ′]/x , [0 | x ′′]/x ′, · · ·

leading towards the correct answer, but
non-terminating

I CoLP derivation ( ): zeros x  zeros x ′ X
I zeros x ′ unifies zeros x .

Result [0 | x ]/x (circular unifier, representing [0, 0, · · · ]/x)
giving exactly the correct answer.
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Background: Proof Relevant Corecursive Resolution
(Precor)

I Created by Komendantskaya et al in 2015

I Including a heuristic to suggest a “coinductive invariant
(Co-I)”, plus a specially suggested calculus to prove the Co-I.

I The corresponding infinite SLD-derivation is recoverable from
a Precor proof.
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Background: Proof Relevant Corecursive Resolution
(Precor)

Example

I Consider the program: ∀x . paul loves (dog of x) → paul loves x
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Background: Proof Relevant Corecursive Resolution
(Precor)

Example

I Consider the program: ∀x . p (d x) → p x
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Background: Proof Relevant Corecursive Resolution
(Precor)

Example

I Consider the program: ∀x . p (d x) → p x
I SLD-derivation ( ): p x  p (d x)  · · ·

Note SLD-derivation is restricted to rewriting.
non-terminating, no answer.

I CoLP-derivation ( ): p x  p (d x) X
I p x unifies p (d x).

Result (d x)/x (circular unifier, denoting [d − d − · · · /x ])
A correct answer !

I Precor suggests a Co-I: ∀x . p x
I then proves the Co-I: ∀x . p x ⇁ p c  p (d c) X
I ⇁ is introduction rule for ∀; p (d c) is an instance of the Co-I.

The Co-I is a correct and more general (than CoLP) answer.
The pattern of the SLD-derivation is captured.
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Background: Limitations of CoLP and Precor

I CoLP only works with cyclic patterns.

I Precor requires that SLD-resolution is restricted to term
matching (rewriting).

Motivating Example

∀xy . from (s x) y → from x [x | y ]
I The “from” predicate has two arguments:

I The first argument takes some number N.

I The second argument returns a stream led by N:

N, s N, s (s N), s (s (s N)), · · ·
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Background: Limitations of CoLP and Precor

Motivating Example

∀xy . from (s x) y → from x [x | y ]

I Task I: Find x and y , such that, from x y

Approach: SLD

I SLD-derivation ( ): from x y  from (s x) y ′  · · ·
Result [x | y ′]/y , [(s x) | y ′′]/y ′, · · ·

Note Full SLD-resolution is needed, instead of just rewriting.

Note Goals do unify (no occurs check)

leading towards the correct answer only for y

non-terminating, no answer for x
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Background: Limitations of CoLP and Precor

Motivating Example

∀xy . from (s x) y → from x [x | y ]

I Task I: Find x and y , such that, from x y

Approach: CoLP

I CoLP-derivation ( ): from x y  from (s x) y ′ X

I from x y unifies from (s x) y ′

Result [ (s x)/x , [x | y ]/y ]

A correct pair of answers for both x and y !
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Background: Limitations of CoLP and Precor

Motivating Example

∀xy . from (s x) y → from x [x | y ]

I Task I: Find x and y , such that, from x y

Approach: Precor

N/A

I because full SLD-resolution is needed, instead of just
rewriting.
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Background: Limitations of CoLP and Precor

Motivating Example

∀xy . from (s x) y → from x [x | y ]

I Task II: Find y , such that, from 0 y

Approach: SLD

I SLD-derivation ( ): from 0 y  from (s 0) y ′  · · ·
Result [0 | y ′]/y , [(s 0) | y ′′]/y ′, · · ·

Note Full SLD-resolution is needed, instead of just rewriting.

Note Goals do not unify (no occurs check)

leading towards the correct answer, but

non-terminating
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Background: Limitations of CoLP and Precor

Motivating Example

∀xy . from (s x) y → from x [x | y ]

I Task II: Find y , such that, from 0 y

Approach: CoLP

I CoLP-derivation ( ): from 0 y  · · ·
I CoLP behaves the same as SLD in this case,

I because goals do not unify (no occurs check).

leading towards the correct answer, but

non-terminating
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Background: Limitations of CoLP and Precor

Motivating Example

∀xy . from (s x) y → from x [x | y ]

I Task II: Find y , such that, from 0 y

Approach: Precor

N/A

I because full SLD-resolution is needed, instead of just
rewriting.
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Background: Limitations of CoLP and Precor

Motivating Example

∀xy . from (s x) y → from x [x | y ]

I Task I: Find x and y , such that, from x y

I Task II: Find y , such that, from 0 y

Approaches: Summary
Algorithm Task I Task II

SLD
CoLP
Precor

At least one answer. No answer.
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Coinductive Uniform Proof (CUP): Motivation

Motivating Example

∀xy . from (s x) y → from x [x | y ]

Approach: CUP

I We need a representation for the stream.

I Let f N denote the stream: N, s N, s (s N), s (s (s N)), · · ·
I Later we will give f as a (higher-order) λ-term.

I Then f (s N) denotes the stream: s N, s (s N), s (s (s N)), · · ·
I So we have f N ≡ [ N | f (s N) ]

I where ≡ denotes equality.
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Coinductive Uniform Proof (CUP): Motivation

Motivating Example

∀xy . from (s x) y → from x [x | y ]

Approach: CUP

I . . . we have f N ≡ [ N | f (s N) ]

I Let Co-I be: ∀x . from x (f x)
I CUP (sketch):

Step 1 ∀x . from x (f x) ⇁ from c (f c)
Step 2 from c (f c) ≡ from c [c | f (s c)]
Step 3 from c [c | f (s c)]  from (s c) (f (s c)) X

I from (s c) (f (s c)) is an instance of Co-I, with substitution
[s c/x ].
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Coinductive Uniform Proof (CUP): Motivation

Motivating Example

∀xy . from (s x) y → from x [x | y ]

Approach: CUP

I Using the CUP proof, we can recover the SLD-derivation for an
arbitrary instance from t (f t) of the Co-I: ∀x . from x (f x).

1. The substitution is [ t/x ] when we get the instance from the Co-I.
I Recall the CUP proof: ∀x . from x (f x) ⇁

from c (f c) ≡ from c [c | f (s c)]  from (s c) (f (s c))
I We need the segment κ : from c (f c) — from (s c) (f (s c))
2. The substitution is [ s c/x ] when we apply Co-I to terminate the proof.
3. Using substitutions [ t/x ] and [ s c/x ], we can generate an infinite set Θ

of substitutions [t/c, s t/c, s(s t)/c, s(s(s t))/c, . . .]
4. We assemble all members of {κσ | σ ∈ Θ} to get:

from t (f t) — from (s t) (f (s t)) — from (s(s t)) (f (s(s t))) · · ·
5. . . . which is just the SLD-derivation (replacing — by  )
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Coinductive Uniform Proof (CUP): Motivation

Motivating Example

∀xy . from (s x) y → from x [x | y ]

Approach: CUP

The pattern of SLD-derivation is captured by the CUP proof.

The Co-I (∀x . from x (f x)) is a more general answer than
that (from x y where [(s x)/x , [x | y ]/y ]) given by CoLP.
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Coinductive Uniform Proof: Overview

I To represent f, we need fixed-point terms

I To prove universally quantified Co-I, we need hereditary
Harrop formula and uniform proof.

I To apply the Co-I in later stage of the proof, we need a
coinductive proof principle

I To prevent unsound application of Co-I, we need a guarding
mechanism

I The system is sound w.r.t

1. The greatest fixed-point model
2. Intuitionistic sequent calculus extended with later modality.
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Overview of Term Syntax

The Set ΛΣ of Well Formed Terms on Σ

I Simply typed λ-terms extended with the fix binder to denote
fixed-points.

Σ; Γ, x : τ ` M : τ

Σ; Γ ` fix x .M : τ
compare with:

Σ; Γ, x : σ ` M : τ

Σ; Γ ` λx .M : σ → τ

I fix x .M is supposed to be equal to M [fix x .M/x ].

The Set ΛG
Σ of Guarded Well Formed Terms

I Guarded terms are particular well formed terms.

I A guarded term models either a finite or an infinite term that
occurs in first-order Horn clause logic programming.
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Low level details
ahead
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The Type System

Definition

B — The set of base type. o /∈ B = {ι}.
T — The set of (simple) types. τ ∈ T ::= B | B→ T
P — The set of proposition types. ρ ∈ P ::= o | B→ P
I We adopt the usual convention that → binds to the right.

Order ord(ι) = ord(o) = 0; all other types π ∈ T ∪ P have
ord(π) = 1.

Arity ar(ι) = ar(o) = 0; if π ∈ T ∪ P then ar(ι→ π) = ar(π) + 1.

Example

T = {ι, ι→ ι, ι→ ι→ ι, . . .}. P = {o, ι→ o, ι→ ι→ o, . . .}.
In other words, any τ ∈ T can be depicted as ιar(τ) → ι, any ρ ∈ P
can be depicted as ιar(ρ) → o.
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Signature and Context

Definition

Con — A countable set of constants a, b, c, . . . .

Var — A countable set of variables x , y , z , . . . .

Σ — A signature, Con 7→ (T ∪ P).
ΣT — The set of term symbols in Σ with types in T.

Σn
T is the subset {c : τ ∈ ΣT | ord(τ) ≤ n} of ΣT.

ΣP — The set of predicate symbols in Σ with types in P.

Σn
P is the subset {r : ρ ∈ ΣP | ord(ρ) ≤ n} of ΣP.

Γ — A context, Var 7→ T.
ΓT — A synonym of Γ.

Γn
T is the subset {x : τ ∈ ΓT | ord(τ) ≤ n} of ΓT.

Example
Let Σ = {a : ι} then ΣT = Σ1

T = Σ0
T 3 a

Let Γ = {y : ι→ ι} then ΓT = Γ1
T 3 y /∈ Γ0

T = ∅
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The Set ΛΣ of Well Formed Terms on Σ

Definition
M ∈ ΛΣ iff Σ; Γ `(m;n) M : τ for some order constraints m, n ≥ 0,
and τ ∈ T. We write Σ; Γ `∗(m;n) M : τ only if Σ; Γ `(m;n) M : τ

and M does not contain any of {fix, λ}.

c : τ ∈ Σm
T

Σ; Γ `(m;n) c : τ

x : τ ∈ Γn
T

Σ; Γ `(m;n) x : τ

Σ; Γ `(m;n) M : σ → τ Σ; Γ `(m;n) N : σ

Σ; Γ `(m;n) M N : τ

Σ; Γ, x : σ `(m;n) M : τ

Σ; Γ `(m;n) λx .M : σ → τ

Σ; Γ, x : τ `(m;n) M : τ

Σ; Γ `(m;n) fix x .M : τ

Figure: Definition of Σ; Γ `(m;n) M : τ .
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The Set ΛΣ of Well Formed Terms on Σ

Example

I Let Σ = {a : ι, f : ι→ ι}, Γ = {y : ι→ ι}.
I Provable: Σ; Γ `(1;1) y a : ι

I Not provable: Σ; Γ `(1;0) y a : ι

↑ Mind the order constraints.

I Provable:

{
Σ;∅ `(1;0) λx . f x : ι→ ι

Σ;∅ `(1;0) fix x . f x : ι

I Not provable:

{
Σ;∅ `∗(1;0) λx . f x : ι→ ι

Σ;∅ `∗(1;0) fix x . f x : ι

↑ Mind the ∗, and note that λx . f x and fix x . f x contain the
binders fix, λ.
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The Set ΛG
Σ of Guarded Well Formed Terms

Definition
If Σ;∅ `. M : τ then M is a guarded fixed-point. If Σ; Γ `g M : ι,
then M is a guarded well formed term. We denote the set of all
guarded well formed terms on Σ by ΛG

Σ .

Σ; Γ `∗(1;0) M : ι

Σ; Γ `g M : ι

Σ;∅ `. M : τ ar(τ) = | ~N| {Σ; Γ `∗(1;0) N : ι | N ∈ ~N}

Σ; Γ `g M ~N : ι

{Σ; ~x : ι `∗(1;0) N : ι | N ∈ ~N1(2,3)}
[

f : τ ′ ∈ Σ1
T ar(τ ′) = |~N1| + 1 + |~N3|

y : τ /∈ ~x ar(τ ) = |~x| = |~N2|

]
Σ;∅ `. fix y . λ~x . f ~N1 (y ~N2) ~N3 : τ

Figure: Definition of Σ; Γ `g M : τ and Σ; Γ `. M : τ
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The Set ΛG
Σ of Guarded Well Formed Terms

Example

I Recall: we let f z denote the stream:
z, s z, s (s z), s (s (s z)), · · ·

I Now we give f as fix y . λx . [x | y (s x)].

I We justify this definition later using the notion of reductions.

I Let Σ = {[ | ] : ι→ ι→ ι, s : ι→ ι}, we have

Σ;∅ `. f : ι→ ι

and
Σ; z : ι `g f z : ι
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The Set ΛG
Σ of Guarded Well Formed Terms

Note that:

I By Def. of ΛG
Σ , there is at most one variable y : τ bound by

fix within any given M ∈ ΛG
Σ .

I By Def. of T 3 τ , ord(τ) can only be 0 or 1.

Definition

I M ∈ ΛG
Σ is first-order if either 1) M does not contain fix, or 2)

there exist y : τ fix-bound in M and ord(τ) = 0.

I M ∈ ΛG
Σ is higher-order if there exist y : τ fix-bound in M and

ord(τ) = 1.

Example

I f z , i.e. fix y : ι→ ι. λx . [x | y (s x)] z is higher-order.

I fix y : ι. [0 | y ] is first-order.
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Well Formed Formulae

Definition
ϕ is a atomic formula on Σ if Σ; Γ 
a ϕ for some Γ; ϕ is a well
formed formula (wff) on Σ if Σ; Γ 
 ϕ for some Γ. A wff ϕ is
closed if Σ;∅ 
 ϕ.

(p : ιn → o) ∈ Σ1
P {Σ; Γ `g Mk : ι | 1 ≤ k ≤ n}

Σ; Γ 
a p M1 · · · Mn

Σ; Γ 
a ϕ

Σ; Γ 
 ϕ
Γ, x : ι 
 ϕ

Σ; Γ 
 ∀x : ι. ϕ

Γ, x : ι 
 ϕ
Σ; Γ 
 ∃x : ι. ϕ

Σ; Γ 
 ϕ Σ; Γ 
 ψ � ∈ {∧,∨,→}
Σ; Γ 
 ϕ� ψ

Figure: Formulae
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Well Formed Formulae

Definition
A well formed formula ϕ is first-order is all terms involved are
first-order. Otherwise ϕ is higher-order.

Example

I ∀~x : ι. from (s x1) x2 → from x1 [x1 | x2] is first-order (and
closed).

I ∀x : ι. from x (f x), where f is fix y : ι→ ι. λz . [z | y (s z)],
is higher-order (and closed).
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Hereditary Harrop Formula for Coinductive Uniform
Proof

A — The set of atomic formulae on Σ.

G — The set of well formed hereditary Harrop goal formulae.

G ::= A | G ∧ G | G ∨ G | ∃x : ι.G | D → G | ∀x : ι.G

D — The set of well formed hereditary Harrop program formulae.

D ::= A | G → D | D ∧ D | ∀x : ι.D

(G ′,D ′) The pair of subsets of G and D containg all and only closed
formulae.

I We take (G ′,D ′) as the abstract language for coinductive
uniform proof.
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Hereditary Harrop Formula for Coinductive Uniform
Proof

Definition

I A program is a subset of D ′.

I A goal is a member of G ′.

Example

The two formulae below consist of a program:

1. ∀~x : ι. from (s x1) x2 → from x1 [x1 | x2]

2. ∀x : ι. from x (f x)

Either formula above can be a goal.
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Equivalence Relation for Terms and Formulae

Definition
On terms in ΛΣ:

I β-reduction (−→β): (λx .M)N −→β M [N/x ]

I fix-reduction (−→fix): (fix x .M) −→fix M [fix x .M/x ]

I combined reduction (−→): The union of the compatible
closures (reductions under applications and binders) of −→β

and −→fix.

I convertible relation (≡): The equivalence closure of −→.

I convertible atoms: Two atoms p M1 · · ·Mn ≡ p M ′1 · · · M ′n if
Mk ≡ M ′k for k = 1, . . . , n.

20 / 28



Equivalence Relation for Terms and Formulae

Example

We use f to abbreviate fix y . λx . [x | y (s x)]. The following terms
are convertible (≡).

I f z

I [z | f (s z)]

I [z , s z | f (s (s z))]

I [z , s z , s (s z) | f (s (s (s z)))]

I · · ·
This justifies our representation of the stream
z, s z, s (s z), s (s (s z)), · · · by f z .
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Coinductive Proof Principle

I Σ;P; ∆ =⇒ ϕ means ϕ has a uniform proof w.r.t program
P ∪∆ on Σ.

I Σ;P # ϕ means ϕ is coinductively provable from program P
on Σ. ϕ is called a coinductive invariant.

I The rule for Σ;P # ϕ is:

Σ;P;ϕ =⇒ 〈ϕ〉
co-fix

Σ;P # ϕ

where ϕ ∈ M ′, 〈 〉 regulates the proof of Σ;P;ϕ =⇒ ϕ.

Reads If Σ;P;ϕ =⇒ ϕ in a regulated way, then Σ;P # ϕ.

M — The intersection of D and G , given as

M ::= A | M ∧M | M → M | ∀x : ι.M

M ′ is the subset of M containing all and only closed formulae.
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Uniform Proof

I Developed by Dale Miller et al in 1990s

I The top-level logical constant in a goal determines the goal(s)
to prove next.

I A proof theoretic foundation for logic programming
I A criterion to judge logic programming languages.

I A language L is suitable for logic programming, if the
proposition below is true.

I There is a uniform proof in L iff there is an intuitionistic proof
in L.

I Four languages satisfy this criterion: first/higher-order Horn
clause/hereditary Harrop formula

I No fixed-point terms. More complex type system.
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Uniform Proof

Σ; P; ∆
D

=⇒ A D ∈ P ∪ ∆
decide

Σ; P; ∆ =⇒ A

A ≡ A′
initial

Σ; P; ∆
A′

==⇒ A

Σ; P; ∆
D

=⇒ A Σ; P; ∆ =⇒ G
→L

Σ; P; ∆
G→D

====⇒ A

Σ; P,D; ∆ =⇒ G
→R

Σ; P; ∆ =⇒ D → G

Σ; P; ∆
Dx==⇒ A x ∈ {1, 2}

∧L
Σ; P; ∆

D1∧D2======⇒ A

Σ; P; ∆ =⇒ G1 Σ; P; ∆ =⇒ G2
∧R

Σ; P; ∆ =⇒ G1 ∧ G2

Σ; P; ∆
D[ N/x ]

======⇒ A Σ; ∅ `g N : ι
∀L

Σ; P; ∆
∀x :ι. D

======⇒ A

c : ι,Σ; P; ∆ =⇒ G [ c/x ] c : ι /∈ Σ
∀R

Σ; P; ∆ =⇒ ∀x : ι. G

Σ; P; ∆ =⇒ G [ N/x ] Σ; ∅ `g N : ι
∃R

Σ; P; ∆ =⇒ ∃x : ι. G

Σ; P; ∆
Gx==⇒ A x ∈ {1, 2}

∨R
Σ; P; ∆ =⇒ G1 ∨ G2

Figure: Uniform Proof, with the field ∆ for a coinductive invariant, and
the relation ≡ for equality between guarded terms.
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Guarding Mechanism

Σ; P; ∆
D

=⇒ A P 3 D /∈ ∆
decide〈〉

Σ; P; ∆ =⇒ 〈A〉

c : ι,Σ; P; ∆ =⇒ 〈M [ c/x ]〉 c : ι /∈ Σ
∀R〈〉

Σ; P; ∆ =⇒ 〈∀x : ι.M〉

Σ; P; ∆ =⇒ 〈M1〉 Σ; P; ∆ =⇒ 〈M2〉 ∧R〈〉
Σ; P; ∆ =⇒ 〈M1 ∧ M2〉

Σ; P,M1; ∆ =⇒ 〈M2〉 →R〈〉
Σ; P; ∆ =⇒ 〈M1 → M2〉

Figure: Guarding Mechanism
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Soundness Properties: w.r.t Herbrand Model

CUP is sound w.r.t the greatest fixed-point model Mν .

Theorem
If Σ;P # ϕ then Mν � ϕ.

Proof Sketch.

I A coinductive uniform proof is a template.

I Using certain substitutions involved in the proof,

I an infinite amount of substitutions can be generated,

I which can instantiate the template into an infinite amount of
instances

I The infinite SLD-derivation can be obtained by assembling
these instances.
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Soundness Properties: w.r.t Herbrand Model

CUP is sound w.r.t the greatest fixed-point model Mν .

Theorem
If Σ;P # ϕ and Σ;P, ϕ# ψ, then Mν � ψ
— provided ϕ either has no ∀ or has no →.

Proof Sketch.
Since Σ;P # ϕ, we have Mν � ϕ. Let M ′ν be the greatest
fixed-point model of P ∪ {ϕ}. Since Σ;P, ϕ# ψ, we have
M ′ν � ψ. We show that Mν = M ′ν .

I If ϕ involves both → and ∀, we may still use ϕ as a lemma,
provided some further conditions are satisfied.
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Soundness Properties: w.r.t iFOLI

CUP is sound w.r.t intuitionistic sequent calculus extended with
later modality (iFOLI)

Definition
The formulae of the logic iFOLI over Σ are well formed formulae
extended with the following rule. Conversion (≡) extends to these
formulae in the obvious way.

Σ; Γ 
 ϕ
Σ; Γ 
 Iϕ

Definition
Γ | ∆ ` ϕ means the formula ϕ is provable in context Γ w.r.t the
set ∆ of formulae.
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Soundness Properties: w.r.t iFOLI

Σ; Γ 
 ∆ ϕ ∈ ∆
(Proj)

Γ | ∆ ` ϕ
Γ | ∆ ` ϕ′ ϕ ≡ ϕ′

(Conv)
Γ | ∆ ` ϕ

Γ | ∆ ` ϕ Γ | ∆ ` ψ
(∧-I)

Γ | ∆ ` ϕ ∧ ψ

Γ | ∆ ` ϕ1 ∧ ϕ2 i ∈ {1, 2}
(∧i -E)

Γ | ∆ ` ϕi

Γ | ∆ ` ϕi i ∈ {1, 2}
(∨i -I)

Γ | ∆ ` ϕ1 ∨ ϕ2

Γ | ∆, ϕ1 ` ψ Γ | ∆, ϕ2 ` ψ
(∨-E)

Γ | ∆, ϕ1 ∨ ϕ2 ` ψ

Γ | ∆, ϕ ` ψ
(→-I)

Γ | ∆ ` ϕ→ ψ

Γ | ∆ ` ϕ→ ψ Γ | ∆ ` ϕ
(→-E)

Γ | ∆ ` ψ

Γ, x : τ | ∆ ` ϕ x : τ 6∈ Γ
(∀-I)

Γ | ∆ ` ∀x : τ. ϕ

Γ | ∆ ` ∀x : τ. ϕ Σ; Γ `(m;n) M : τ
(∀-E)

Γ | ∆ ` ϕ [ M/x ]

Σ; Γ `(m;n) M : τ Γ | ∆ ` ϕ [ M/x ]
(∃-I)

Γ | ∆ ` ∃x : τ. ϕ

Γ, x : τ | ∆, ϕ ` ψ x : τ 6∈ Γ
(∃-E)

Γ | ∆, ∃x : τ. ϕ ` ψ

Intuitionistic Rules for Standard Connectives

Γ | ∆ ` ϕ
(Next)

Γ | ∆ ` Iϕ

Γ | ∆ ` I(ϕ→ ψ)
(Mon)

Γ | ∆ ` Iϕ→ Iψ

Γ | ∆,Iϕ ` ϕ
(Löb)

Γ | ∆ ` ϕ

Rules for the Later Modality
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Soundness Properties: w.r.t iFOLI

Definition
Given a Horn clause ϕ of the shape ∀~x . (A1 ∧ · · · ∧ An)→ A, we
define its guarding ϕ to be ∀~x . (IA1 ∧ · · · ∧IAn)→ A. For a
collection P of Horn clauses, we define its guarding P by guarding
each formula in P.

Theorem
If Σ;P # ϕ then ∅ | P ` ϕ.

Proof Sketch.
We do case analysis with an inductive argument.
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