
Coinductive Uniform Proofs

Presented by

Mr Yue Li

Researched by

Dr Henning Basold2

Dr Ekaterina Komendantskaya1

Mr Yue Li1

1Heriot-Watt University, Scotland

2ENS de Lyon, France

8 July 2018, Oxford, UK

1 / 28

Introduction

Context First-order Horn clause logic programming.

Goal Detecting non-termination by coinductive proof.

State of the Art Heuristic algorithms

1. Coinductive Logic Programming
2. Proof Relevant Corecursive Resolution

Open Problems The heuristic algorithms:

1. have limits, and
2. do not have proof theoretic foundation.

We Propose: Coinductive Uniform Proof

I A principled approach to the Goal.

I A proof theoretic foundation for the heuristic algorithms.

I Breaking through the limits of the heuristic algorithms.

2 / 28

Background: Fixed-point Models (aka Herbrand
Models)

I Given a first-order Horn clause logic program P, in classical
logic:

I The least fixed-point model contains all finite terms that can
be proved to be true w.r.t P.

I The greatest fixed-point model contains all finite and infinite
terms that cannot be proved to be false (i.e. either true or
non-terminating) w.r.t P.

Example

I Clauses nat 0 and ∀x . nat x → nat (s x) intend to define the
set N of all non-negative integers.

I A typical n ∈ N has the form s − · · · − s − 0.

I The least fixed point model is Mµ = {nat n | n ∈ N} .

I The greatest fixed-point model is Mν = Mµ ∪ {nat ω}
I . . . where ω is the infinite term s − s − s − · · · .

3 / 28

Background: Coinductive Logic Programming
(CoLP)

I Created by Gopal Gupta et al in 2006

I A goal succeeds if it unifies a previous goal (no occurs check)

I Being sound w.r.t. the greatest fixed-point model.

Example

I Consider the program: ∀x . zeros x → zeros [0 | x]
I SLD-derivation (): zeros x zeros x ′ · · ·
Result [0 | x ′]/x , [0 | x ′′]/x ′, · · ·

leading towards the correct answer, but
non-terminating

I CoLP derivation (): zeros x zeros x ′ X
I zeros x ′ unifies zeros x .

Result [0 | x]/x (circular unifier, representing [0, 0, · · ·]/x)
giving exactly the correct answer.

4 / 28

Background: Proof Relevant Corecursive Resolution
(Precor)

I Created by Komendantskaya et al in 2015

I Including a heuristic to suggest a “coinductive invariant
(Co-I)”, plus a specially suggested calculus to prove the Co-I.

I The corresponding infinite SLD-derivation is recoverable from
a Precor proof.

5 / 28

Background: Proof Relevant Corecursive Resolution
(Precor)

Example

I Consider the program: ∀x . paul loves (dog of x) → paul loves x

6 / 28

Background: Proof Relevant Corecursive Resolution
(Precor)

Example

I Consider the program: ∀x . p (d x) → p x

6 / 28

Background: Proof Relevant Corecursive Resolution
(Precor)

Example

I Consider the program: ∀x . p (d x) → p x
I SLD-derivation (): p x p (d x) · · ·

Note SLD-derivation is restricted to rewriting.
non-terminating, no answer.

I CoLP-derivation (): p x p (d x) X
I p x unifies p (d x).

Result (d x)/x (circular unifier, denoting [d − d − · · · /x])
A correct answer !

I Precor suggests a Co-I: ∀x . p x
I then proves the Co-I: ∀x . p x ⇁ p c p (d c) X
I ⇁ is introduction rule for ∀; p (d c) is an instance of the Co-I.

The Co-I is a correct and more general (than CoLP) answer.
The pattern of the SLD-derivation is captured.

6 / 28

Background: Limitations of CoLP and Precor

I CoLP only works with cyclic patterns.

I Precor requires that SLD-resolution is restricted to term
matching (rewriting).

Motivating Example

∀xy . from (s x) y → from x [x | y]
I The “from” predicate has two arguments:

I The first argument takes some number N.

I The second argument returns a stream led by N:

N, s N, s (s N), s (s (s N)), · · ·

7 / 28

Background: Limitations of CoLP and Precor

Motivating Example

∀xy . from (s x) y → from x [x | y]

I Task I: Find x and y , such that, from x y

Approach: SLD

I SLD-derivation (): from x y from (s x) y ′ · · ·
Result [x | y ′]/y , [(s x) | y ′′]/y ′, · · ·

Note Full SLD-resolution is needed, instead of just rewriting.

Note Goals do unify (no occurs check)

leading towards the correct answer only for y

non-terminating, no answer for x

8 / 28

Background: Limitations of CoLP and Precor

Motivating Example

∀xy . from (s x) y → from x [x | y]

I Task I: Find x and y , such that, from x y

Approach: CoLP

I CoLP-derivation (): from x y from (s x) y ′ X

I from x y unifies from (s x) y ′

Result [(s x)/x , [x | y]/y]

A correct pair of answers for both x and y !

8 / 28

Background: Limitations of CoLP and Precor

Motivating Example

∀xy . from (s x) y → from x [x | y]

I Task I: Find x and y , such that, from x y

Approach: Precor

N/A

I because full SLD-resolution is needed, instead of just
rewriting.

8 / 28

Background: Limitations of CoLP and Precor

Motivating Example

∀xy . from (s x) y → from x [x | y]

I Task II: Find y , such that, from 0 y

Approach: SLD

I SLD-derivation (): from 0 y from (s 0) y ′ · · ·
Result [0 | y ′]/y , [(s 0) | y ′′]/y ′, · · ·

Note Full SLD-resolution is needed, instead of just rewriting.

Note Goals do not unify (no occurs check)

leading towards the correct answer, but

non-terminating

9 / 28

Background: Limitations of CoLP and Precor

Motivating Example

∀xy . from (s x) y → from x [x | y]

I Task II: Find y , such that, from 0 y

Approach: CoLP

I CoLP-derivation (): from 0 y · · ·
I CoLP behaves the same as SLD in this case,

I because goals do not unify (no occurs check).

leading towards the correct answer, but

non-terminating

9 / 28

Background: Limitations of CoLP and Precor

Motivating Example

∀xy . from (s x) y → from x [x | y]

I Task II: Find y , such that, from 0 y

Approach: Precor

N/A

I because full SLD-resolution is needed, instead of just
rewriting.

9 / 28

Background: Limitations of CoLP and Precor

Motivating Example

∀xy . from (s x) y → from x [x | y]

I Task I: Find x and y , such that, from x y

I Task II: Find y , such that, from 0 y

Approaches: Summary
Algorithm Task I Task II

SLD
CoLP
Precor

At least one answer. No answer.

9 / 28

Coinductive Uniform Proof (CUP): Motivation

Motivating Example

∀xy . from (s x) y → from x [x | y]

Approach: CUP

I We need a representation for the stream.

I Let f N denote the stream: N, s N, s (s N), s (s (s N)), · · ·
I Later we will give f as a (higher-order) λ-term.

I Then f (s N) denotes the stream: s N, s (s N), s (s (s N)), · · ·
I So we have f N ≡ [N | f (s N)]

I where ≡ denotes equality.

10 / 28

Coinductive Uniform Proof (CUP): Motivation

Motivating Example

∀xy . from (s x) y → from x [x | y]

Approach: CUP

I . . . we have f N ≡ [N | f (s N)]

I Let Co-I be: ∀x . from x (f x)
I CUP (sketch):

Step 1 ∀x . from x (f x) ⇁ from c (f c)
Step 2 from c (f c) ≡ from c [c | f (s c)]
Step 3 from c [c | f (s c)] from (s c) (f (s c)) X

I from (s c) (f (s c)) is an instance of Co-I, with substitution
[s c/x].

10 / 28

Coinductive Uniform Proof (CUP): Motivation

Motivating Example

∀xy . from (s x) y → from x [x | y]

Approach: CUP

I Using the CUP proof, we can recover the SLD-derivation for an
arbitrary instance from t (f t) of the Co-I: ∀x . from x (f x).

1. The substitution is [t/x] when we get the instance from the Co-I.
I Recall the CUP proof: ∀x . from x (f x) ⇁

from c (f c) ≡ from c [c | f (s c)] from (s c) (f (s c))
I We need the segment κ : from c (f c) — from (s c) (f (s c))
2. The substitution is [s c/x] when we apply Co-I to terminate the proof.
3. Using substitutions [t/x] and [s c/x], we can generate an infinite set Θ

of substitutions [t/c, s t/c, s(s t)/c, s(s(s t))/c, . . .]
4. We assemble all members of {κσ | σ ∈ Θ} to get:

from t (f t) — from (s t) (f (s t)) — from (s(s t)) (f (s(s t))) · · ·
5. . . . which is just the SLD-derivation (replacing — by)

10 / 28

Coinductive Uniform Proof (CUP): Motivation

Motivating Example

∀xy . from (s x) y → from x [x | y]

Approach: CUP

The pattern of SLD-derivation is captured by the CUP proof.

The Co-I (∀x . from x (f x)) is a more general answer than
that (from x y where [(s x)/x , [x | y]/y]) given by CoLP.

10 / 28

Coinductive Uniform Proof: Overview

I To represent f, we need fixed-point terms

I To prove universally quantified Co-I, we need hereditary
Harrop formula and uniform proof.

I To apply the Co-I in later stage of the proof, we need a
coinductive proof principle

I To prevent unsound application of Co-I, we need a guarding
mechanism

I The system is sound w.r.t

1. The greatest fixed-point model
2. Intuitionistic sequent calculus extended with later modality.

11 / 28

Overview of Term Syntax

The Set ΛΣ of Well Formed Terms on Σ

I Simply typed λ-terms extended with the fix binder to denote
fixed-points.

Σ; Γ, x : τ ` M : τ

Σ; Γ ` fix x .M : τ
compare with:

Σ; Γ, x : σ ` M : τ

Σ; Γ ` λx .M : σ → τ

I fix x .M is supposed to be equal to M [fix x .M/x].

The Set ΛG
Σ of Guarded Well Formed Terms

I Guarded terms are particular well formed terms.

I A guarded term models either a finite or an infinite term that
occurs in first-order Horn clause logic programming.

12 / 28

Low level details
ahead

13 / 28

The Type System

Definition

B — The set of base type. o /∈ B = {ι}.
T — The set of (simple) types. τ ∈ T ::= B | B→ T
P — The set of proposition types. ρ ∈ P ::= o | B→ P
I We adopt the usual convention that → binds to the right.

Order ord(ι) = ord(o) = 0; all other types π ∈ T ∪ P have
ord(π) = 1.

Arity ar(ι) = ar(o) = 0; if π ∈ T ∪ P then ar(ι→ π) = ar(π) + 1.

Example

T = {ι, ι→ ι, ι→ ι→ ι, . . .}. P = {o, ι→ o, ι→ ι→ o, . . .}.
In other words, any τ ∈ T can be depicted as ιar(τ) → ι, any ρ ∈ P
can be depicted as ιar(ρ) → o.

14 / 28

Signature and Context

Definition

Con — A countable set of constants a, b, c,

Var — A countable set of variables x , y , z ,

Σ — A signature, Con 7→ (T ∪ P).
ΣT — The set of term symbols in Σ with types in T.

Σn
T is the subset {c : τ ∈ ΣT | ord(τ) ≤ n} of ΣT.

ΣP — The set of predicate symbols in Σ with types in P.

Σn
P is the subset {r : ρ ∈ ΣP | ord(ρ) ≤ n} of ΣP.

Γ — A context, Var 7→ T.
ΓT — A synonym of Γ.

Γn
T is the subset {x : τ ∈ ΓT | ord(τ) ≤ n} of ΓT.

Example
Let Σ = {a : ι} then ΣT = Σ1

T = Σ0
T 3 a

Let Γ = {y : ι→ ι} then ΓT = Γ1
T 3 y /∈ Γ0

T = ∅

15 / 28

The Set ΛΣ of Well Formed Terms on Σ

Definition
M ∈ ΛΣ iff Σ; Γ `(m;n) M : τ for some order constraints m, n ≥ 0,
and τ ∈ T. We write Σ; Γ `∗(m;n) M : τ only if Σ; Γ `(m;n) M : τ

and M does not contain any of {fix, λ}.

c : τ ∈ Σm
T

Σ; Γ `(m;n) c : τ

x : τ ∈ Γn
T

Σ; Γ `(m;n) x : τ

Σ; Γ `(m;n) M : σ → τ Σ; Γ `(m;n) N : σ

Σ; Γ `(m;n) M N : τ

Σ; Γ, x : σ `(m;n) M : τ

Σ; Γ `(m;n) λx .M : σ → τ

Σ; Γ, x : τ `(m;n) M : τ

Σ; Γ `(m;n) fix x .M : τ

Figure: Definition of Σ; Γ `(m;n) M : τ .
16 / 28

The Set ΛΣ of Well Formed Terms on Σ

Example

I Let Σ = {a : ι, f : ι→ ι}, Γ = {y : ι→ ι}.
I Provable: Σ; Γ `(1;1) y a : ι

I Not provable: Σ; Γ `(1;0) y a : ι

↑ Mind the order constraints.

I Provable:

{
Σ;∅ `(1;0) λx . f x : ι→ ι

Σ;∅ `(1;0) fix x . f x : ι

I Not provable:

{
Σ;∅ `∗(1;0) λx . f x : ι→ ι

Σ;∅ `∗(1;0) fix x . f x : ι

↑ Mind the ∗, and note that λx . f x and fix x . f x contain the
binders fix, λ.

16 / 28

The Set ΛG
Σ of Guarded Well Formed Terms

Definition
If Σ;∅ `. M : τ then M is a guarded fixed-point. If Σ; Γ `g M : ι,
then M is a guarded well formed term. We denote the set of all
guarded well formed terms on Σ by ΛG

Σ .

Σ; Γ `∗(1;0) M : ι

Σ; Γ `g M : ι

Σ;∅ `. M : τ ar(τ) = | ~N| {Σ; Γ `∗(1;0) N : ι | N ∈ ~N}

Σ; Γ `g M ~N : ι

{Σ; ~x : ι `∗(1;0) N : ι | N ∈ ~N1(2,3)}
[

f : τ ′ ∈ Σ1
T ar(τ ′) = |~N1| + 1 + |~N3|

y : τ /∈ ~x ar(τ) = |~x| = |~N2|

]
Σ;∅ `. fix y . λ~x . f ~N1 (y ~N2) ~N3 : τ

Figure: Definition of Σ; Γ `g M : τ and Σ; Γ `. M : τ

17 / 28

The Set ΛG
Σ of Guarded Well Formed Terms

Example

I Recall: we let f z denote the stream:
z, s z, s (s z), s (s (s z)), · · ·

I Now we give f as fix y . λx . [x | y (s x)].

I We justify this definition later using the notion of reductions.

I Let Σ = {[|] : ι→ ι→ ι, s : ι→ ι}, we have

Σ;∅ `. f : ι→ ι

and
Σ; z : ι `g f z : ι

17 / 28

The Set ΛG
Σ of Guarded Well Formed Terms

Note that:

I By Def. of ΛG
Σ , there is at most one variable y : τ bound by

fix within any given M ∈ ΛG
Σ .

I By Def. of T 3 τ , ord(τ) can only be 0 or 1.

Definition

I M ∈ ΛG
Σ is first-order if either 1) M does not contain fix, or 2)

there exist y : τ fix-bound in M and ord(τ) = 0.

I M ∈ ΛG
Σ is higher-order if there exist y : τ fix-bound in M and

ord(τ) = 1.

Example

I f z , i.e. fix y : ι→ ι. λx . [x | y (s x)] z is higher-order.

I fix y : ι. [0 | y] is first-order.

17 / 28

Well Formed Formulae

Definition
ϕ is a atomic formula on Σ if Σ; Γ
a ϕ for some Γ; ϕ is a well
formed formula (wff) on Σ if Σ; Γ
 ϕ for some Γ. A wff ϕ is
closed if Σ;∅
 ϕ.

(p : ιn → o) ∈ Σ1
P {Σ; Γ `g Mk : ι | 1 ≤ k ≤ n}

Σ; Γ
a p M1 · · · Mn

Σ; Γ
a ϕ

Σ; Γ
 ϕ
Γ, x : ι
 ϕ

Σ; Γ
 ∀x : ι. ϕ

Γ, x : ι
 ϕ
Σ; Γ
 ∃x : ι. ϕ

Σ; Γ
 ϕ Σ; Γ
 ψ � ∈ {∧,∨,→}
Σ; Γ
 ϕ� ψ

Figure: Formulae

18 / 28

Well Formed Formulae

Definition
A well formed formula ϕ is first-order is all terms involved are
first-order. Otherwise ϕ is higher-order.

Example

I ∀~x : ι. from (s x1) x2 → from x1 [x1 | x2] is first-order (and
closed).

I ∀x : ι. from x (f x), where f is fix y : ι→ ι. λz . [z | y (s z)],
is higher-order (and closed).

18 / 28

Hereditary Harrop Formula for Coinductive Uniform
Proof

A — The set of atomic formulae on Σ.

G — The set of well formed hereditary Harrop goal formulae.

G ::= A | G ∧ G | G ∨ G | ∃x : ι.G | D → G | ∀x : ι.G

D — The set of well formed hereditary Harrop program formulae.

D ::= A | G → D | D ∧ D | ∀x : ι.D

(G ′,D ′) The pair of subsets of G and D containg all and only closed
formulae.

I We take (G ′,D ′) as the abstract language for coinductive
uniform proof.

19 / 28

Hereditary Harrop Formula for Coinductive Uniform
Proof

Definition

I A program is a subset of D ′.

I A goal is a member of G ′.

Example

The two formulae below consist of a program:

1. ∀~x : ι. from (s x1) x2 → from x1 [x1 | x2]

2. ∀x : ι. from x (f x)

Either formula above can be a goal.

19 / 28

Equivalence Relation for Terms and Formulae

Definition
On terms in ΛΣ:

I β-reduction (−→β): (λx .M)N −→β M [N/x]

I fix-reduction (−→fix): (fix x .M) −→fix M [fix x .M/x]

I combined reduction (−→): The union of the compatible
closures (reductions under applications and binders) of −→β

and −→fix.

I convertible relation (≡): The equivalence closure of −→.

I convertible atoms: Two atoms p M1 · · ·Mn ≡ p M ′1 · · · M ′n if
Mk ≡ M ′k for k = 1, . . . , n.

20 / 28

Equivalence Relation for Terms and Formulae

Example

We use f to abbreviate fix y . λx . [x | y (s x)]. The following terms
are convertible (≡).

I f z

I [z | f (s z)]

I [z , s z | f (s (s z))]

I [z , s z , s (s z) | f (s (s (s z)))]

I · · ·
This justifies our representation of the stream
z, s z, s (s z), s (s (s z)), · · · by f z .

20 / 28

Coinductive Proof Principle

I Σ;P; ∆ =⇒ ϕ means ϕ has a uniform proof w.r.t program
P ∪∆ on Σ.

I Σ;P # ϕ means ϕ is coinductively provable from program P
on Σ. ϕ is called a coinductive invariant.

I The rule for Σ;P # ϕ is:

Σ;P;ϕ =⇒ 〈ϕ〉
co-fix

Σ;P # ϕ

where ϕ ∈ M ′, 〈 〉 regulates the proof of Σ;P;ϕ =⇒ ϕ.

Reads If Σ;P;ϕ =⇒ ϕ in a regulated way, then Σ;P # ϕ.

M — The intersection of D and G , given as

M ::= A | M ∧M | M → M | ∀x : ι.M

M ′ is the subset of M containing all and only closed formulae.

21 / 28

Uniform Proof

I Developed by Dale Miller et al in 1990s

I The top-level logical constant in a goal determines the goal(s)
to prove next.

I A proof theoretic foundation for logic programming
I A criterion to judge logic programming languages.

I A language L is suitable for logic programming, if the
proposition below is true.

I There is a uniform proof in L iff there is an intuitionistic proof
in L.

I Four languages satisfy this criterion: first/higher-order Horn
clause/hereditary Harrop formula

I No fixed-point terms. More complex type system.

22 / 28

Uniform Proof

Σ; P; ∆
D

=⇒ A D ∈ P ∪ ∆
decide

Σ; P; ∆ =⇒ A

A ≡ A′
initial

Σ; P; ∆
A′

==⇒ A

Σ; P; ∆
D

=⇒ A Σ; P; ∆ =⇒ G
→L

Σ; P; ∆
G→D

====⇒ A

Σ; P,D; ∆ =⇒ G
→R

Σ; P; ∆ =⇒ D → G

Σ; P; ∆
Dx==⇒ A x ∈ {1, 2}

∧L
Σ; P; ∆

D1∧D2======⇒ A

Σ; P; ∆ =⇒ G1 Σ; P; ∆ =⇒ G2
∧R

Σ; P; ∆ =⇒ G1 ∧ G2

Σ; P; ∆
D[N/x]

======⇒ A Σ; ∅ `g N : ι
∀L

Σ; P; ∆
∀x :ι. D

======⇒ A

c : ι,Σ; P; ∆ =⇒ G [c/x] c : ι /∈ Σ
∀R

Σ; P; ∆ =⇒ ∀x : ι. G

Σ; P; ∆ =⇒ G [N/x] Σ; ∅ `g N : ι
∃R

Σ; P; ∆ =⇒ ∃x : ι. G

Σ; P; ∆
Gx==⇒ A x ∈ {1, 2}

∨R
Σ; P; ∆ =⇒ G1 ∨ G2

Figure: Uniform Proof, with the field ∆ for a coinductive invariant, and
the relation ≡ for equality between guarded terms.

22 / 28

Guarding Mechanism

Σ; P; ∆
D

=⇒ A P 3 D /∈ ∆
decide〈〉

Σ; P; ∆ =⇒ 〈A〉

c : ι,Σ; P; ∆ =⇒ 〈M [c/x]〉 c : ι /∈ Σ
∀R〈〉

Σ; P; ∆ =⇒ 〈∀x : ι.M〉

Σ; P; ∆ =⇒ 〈M1〉 Σ; P; ∆ =⇒ 〈M2〉 ∧R〈〉
Σ; P; ∆ =⇒ 〈M1 ∧ M2〉

Σ; P,M1; ∆ =⇒ 〈M2〉 →R〈〉
Σ; P; ∆ =⇒ 〈M1 → M2〉

Figure: Guarding Mechanism

23 / 28

Soundness Properties: w.r.t Herbrand Model

CUP is sound w.r.t the greatest fixed-point model Mν .

Theorem
If Σ;P # ϕ then Mν � ϕ.

Proof Sketch.

I A coinductive uniform proof is a template.

I Using certain substitutions involved in the proof,

I an infinite amount of substitutions can be generated,

I which can instantiate the template into an infinite amount of
instances

I The infinite SLD-derivation can be obtained by assembling
these instances.

24 / 28

Soundness Properties: w.r.t Herbrand Model

CUP is sound w.r.t the greatest fixed-point model Mν .

Theorem
If Σ;P # ϕ and Σ;P, ϕ# ψ, then Mν � ψ
— provided ϕ either has no ∀ or has no →.

Proof Sketch.
Since Σ;P # ϕ, we have Mν � ϕ. Let M ′ν be the greatest
fixed-point model of P ∪ {ϕ}. Since Σ;P, ϕ# ψ, we have
M ′ν � ψ. We show that Mν = M ′ν .

I If ϕ involves both → and ∀, we may still use ϕ as a lemma,
provided some further conditions are satisfied.

24 / 28

Soundness Properties: w.r.t iFOLI

CUP is sound w.r.t intuitionistic sequent calculus extended with
later modality (iFOLI)

Definition
The formulae of the logic iFOLI over Σ are well formed formulae
extended with the following rule. Conversion (≡) extends to these
formulae in the obvious way.

Σ; Γ
 ϕ
Σ; Γ
 Iϕ

Definition
Γ | ∆ ` ϕ means the formula ϕ is provable in context Γ w.r.t the
set ∆ of formulae.

25 / 28

Soundness Properties: w.r.t iFOLI

Σ; Γ
 ∆ ϕ ∈ ∆
(Proj)

Γ | ∆ ` ϕ
Γ | ∆ ` ϕ′ ϕ ≡ ϕ′

(Conv)
Γ | ∆ ` ϕ

Γ | ∆ ` ϕ Γ | ∆ ` ψ
(∧-I)

Γ | ∆ ` ϕ ∧ ψ

Γ | ∆ ` ϕ1 ∧ ϕ2 i ∈ {1, 2}
(∧i -E)

Γ | ∆ ` ϕi

Γ | ∆ ` ϕi i ∈ {1, 2}
(∨i -I)

Γ | ∆ ` ϕ1 ∨ ϕ2

Γ | ∆, ϕ1 ` ψ Γ | ∆, ϕ2 ` ψ
(∨-E)

Γ | ∆, ϕ1 ∨ ϕ2 ` ψ

Γ | ∆, ϕ ` ψ
(→-I)

Γ | ∆ ` ϕ→ ψ

Γ | ∆ ` ϕ→ ψ Γ | ∆ ` ϕ
(→-E)

Γ | ∆ ` ψ

Γ, x : τ | ∆ ` ϕ x : τ 6∈ Γ
(∀-I)

Γ | ∆ ` ∀x : τ. ϕ

Γ | ∆ ` ∀x : τ. ϕ Σ; Γ `(m;n) M : τ
(∀-E)

Γ | ∆ ` ϕ [M/x]

Σ; Γ `(m;n) M : τ Γ | ∆ ` ϕ [M/x]
(∃-I)

Γ | ∆ ` ∃x : τ. ϕ

Γ, x : τ | ∆, ϕ ` ψ x : τ 6∈ Γ
(∃-E)

Γ | ∆, ∃x : τ. ϕ ` ψ

Intuitionistic Rules for Standard Connectives

Γ | ∆ ` ϕ
(Next)

Γ | ∆ ` Iϕ

Γ | ∆ ` I(ϕ→ ψ)
(Mon)

Γ | ∆ ` Iϕ→ Iψ

Γ | ∆,Iϕ ` ϕ
(Löb)

Γ | ∆ ` ϕ

Rules for the Later Modality

25 / 28

Soundness Properties: w.r.t iFOLI

Definition
Given a Horn clause ϕ of the shape ∀~x . (A1 ∧ · · · ∧ An)→ A, we
define its guarding ϕ to be ∀~x . (IA1 ∧ · · · ∧IAn)→ A. For a
collection P of Horn clauses, we define its guarding P by guarding
each formula in P.

Theorem
If Σ;P # ϕ then ∅ | P ` ϕ.

Proof Sketch.
We do case analysis with an inductive argument.

25 / 28

Summary

Introduction
Background

Herbrand Models
CoLP
Precor
Limitations

Coinductive Uniform Proof
Motivation
Overview
Terms and Formulae

Overview of Term Syntax
The Type System

Signature and Context
Well Formed Terms
Guarded Terms
Well Formed Formulae
Hereditary Harrop Formula
Equivalence Relation

CUP Rules
Coinductive Proof Principle
Uniform Proof
Guarding Mechanism

Soundness Properties
w.r.t Herbrand Model
w.r.t iFOLI

26 / 28

Acknowledgment

We thank Dr Murdoch James Gabbay for his suggestions to
improve these slides !

27 / 28

28 / 28

	Introduction
	Background
	Herbrand (Fixed-point) Models
	Coinductive Logic Programming
	Proof Relevant Corecursive Resolution
	Limitations of CoLP and Precor

	Coinductive Uniform Proof
	Motivation
	Overview
	Terms and Formulae
	CUP Rules

	Soundness Properties
	w.r.t Herbrand Model
	w.r.t iFOL`39`42`"613A``45`47`"603A

	Summary
	Acknowledgment

