On Overflow of Unsigned Integer Multiplication

Yue LI

May 7, 2023

The x86 unsigned multiplication instruction MUL multiplies RAX with some quadword and stores the result in RDX:RAX. The overflow flag OF and carry flag CF are set if the high-order bits of the result, which are stored in RDX, are non-zero. The notion of overflow applicable to the MUL instruction is therefore that multiplication of two n-bit (unsigned) integers has a result that is longer than n bits. Taking into account that MUL actually uses $2 n$ bits to store the result of multiplication of two n-bit numbers, in this blog we ask and answer a different overflow question: is it possible that multiplying two n-bit unsigned integers and the result is longer than $2 n$ bits?

We shall answer negatively, and prove the following Proposition.
Proposition. For all $n=1,2,3, \ldots$, the result of multiplication of two unsigned n-bit integers has at most $2 n$ bits.

Since an all-ones, like 111111111111, is the largest n-bit unsigned integer for every n, if we can show that two n-bit all-ones multiply and the result is no more than $2 n$ bits, then the Proposition easily follows.

Lemma. For all $n=1,2,3, \ldots$, the square of the largest n-bit unsigned integer has at most $2 n$ bits.

Our proof for the Lemma is inductive, but before examining the formal arguments, let's warm up by looking at some particular cases.

1 Pattern Discovery for Induction

Below we show that the Lemma holds for $1 \leq n \leq 6$. We shall use sum of powers of 2 to denote an unsigned binary integer, then e.g. 1111 is $2^{3}+2^{2}+2^{1}+2^{0}$. Equation 1 shows that 1^{2} has 1 bit.

$$
\begin{equation*}
\left(2^{0}\right)^{2}=2^{0} \tag{1}
\end{equation*}
$$

Next, when building Equation 2 we use Equation 1 (as underlined).

$$
\begin{array}{cc}
& \left(2^{1}+2^{0}\right)^{2} \\
= & \left(2^{1}\right)^{2}+2 \cdot 2^{1} \cdot 2^{0}+\underline{\left(2^{0}\right)^{2}} \\
= & \left(2^{2}+2^{2}\right)+\underline{2^{0}} \text { by }(1) \\
= & 2^{3}+2^{0} \tag{2}
\end{array}
$$

Equation 2 shows that 11^{2} has 4 bits. Next, when building Equation 3 we use Equation 2.

$$
\begin{array}{cc}
& \left(2^{2}+2^{1}+2^{0}\right)^{2} \\
= & \left(2^{2}\right)^{2}+2 \cdot 2^{2}\left(2^{1}+2^{0}\right)+\underline{\left(2^{1}+2^{0}\right)^{2}} \\
= & 2^{4}+2^{3}\left(2^{1}+2^{0}\right)+\underline{2^{3}+2^{0}} \text { by }(2) \\
= & \left(2^{4}+2^{4}\right)+\left(2^{3}+2^{3}\right)+2^{0} \\
= & 2^{5}+2^{4}+2^{0} \tag{3}
\end{array}
$$

Equation 3 shows that 111^{2} has 6 bits. Next, when building Equation 4 we use Equation 3.

$$
\begin{array}{cc}
& \left(2^{3}+2^{2}+2^{1}+2^{0}\right)^{2} \\
= & \left(2^{3}\right)^{2}+2 \cdot 2^{3}\left(2^{2}+2^{1}+2^{0}\right)+\underline{\left(2^{2}+2^{1}+2^{0}\right)^{2}} \\
= & 2^{6}+2^{4}\left(2^{2}+2^{1}+2^{0}\right)+2^{5}+2^{4}+2^{0} \text { by }(3) \\
= & \left(2^{6}+2^{6}\right)+\left(2^{5}+2^{4}\right)+\left(2^{5}+2^{4}\right)+2^{0} \\
= & 2^{7}+2^{6}+2^{5}+2^{0} \tag{4}
\end{array}
$$

Equation 4 shows that 1111^{2} has 8 bits. Next, when building Equation 5 we use Equation 4.

$$
\begin{array}{cc}
& \left(2^{4}+2^{3}+2^{2}+2^{1}+2^{0}\right)^{2} \\
= & \left(2^{4}\right)^{2}+2 \cdot 2^{4}\left(2^{3}+2^{2}+2^{1}+2^{0}\right)+\left(2^{3}+2^{2}+2^{1}+2^{0}\right)^{2} \\
= & 2^{8}+2^{5}\left(2^{3}+2^{2}+2^{1}+2^{0}\right)+2^{7}+2^{6}+2^{5}+2^{0} \\
= & \left(2^{8}+2^{8}\right)+\left(2^{7}+2^{6}+2^{5}\right)+\left(2^{7}+2^{6}+2^{5}\right)+2^{0} \\
= & 2^{9}+2^{8}+2^{7}+2^{6}+2^{0} \tag{5}
\end{array}
$$

Equation 5 shows that 11111^{2} has 10 bits. Next, when building Equation 6 we use Equation 5.

$$
\begin{array}{cc}
& \left(2^{5}+2^{4}+2^{3}+2^{2}+2^{1}+2^{0}\right)^{2} \\
= & \left(2^{5}\right)^{2}+2 \cdot 2^{5}\left(2^{4}+2^{3}+2^{2}+2^{1}+2^{0}\right)+\left(2^{4}+2^{3}+2^{2}+2^{1}+2^{0}\right)^{2} \\
= & 2^{10}+2^{6}\left(2^{4}+2^{3}+2^{2}+2^{1}+2^{0}\right)+2^{9}+2^{8}+2^{7}+2^{6}+2^{0} \text { by }(5) \\
= & \left(2^{10}+2^{10}\right)+\left(2^{9}+2^{8}+2^{7}+2^{6}\right)+\left(2^{9}+2^{8}+2^{7}+2^{6}\right)+2^{0} \\
= & 2^{11}+2^{10}+2^{9}+2^{8}+2^{7}+2^{0} \tag{6}
\end{array}
$$

Equation 6 shows that 111111^{2} has 12 bits.

2 Formal Inductive Proof

Based on Equations 1-6, it is reasonable to conjecture that for all $n=0,1,2,3, \ldots$,

$$
\begin{equation*}
\left(2^{n}+2^{n-1}+\cdots+2^{0}\right)^{2}=2^{2 n+1}+2^{2 n}+\cdots+2^{n+2}+2^{0} \tag{7}
\end{equation*}
$$

Note that on both sides of Equation 7 the powers of 2 are in descending order, so that the right hand side is instantiated by 2^{0} when $n=0$, by $2^{3}+2^{0}$ when $n=1$ and by $2^{5}+2^{4}+2^{0}$ when $n=2$, and so on.

Based on how we progress from Equation 1 to 6, we have the following scheme of progression from the square of sum up to n-th power of 2 , to the square of sum up to $(n+1)$-th power of 2 .

$$
\begin{array}{cc}
& \left(2^{n+1}+2^{n}+\cdots+2^{0}\right)^{2} \\
= & \left(2^{n+1}\right)^{2}+2 \cdot 2^{n+1}\left(2^{n}+2^{n-1}+\cdots+2^{0}\right)+\underline{\left(2^{n}+2^{n-1}+\cdots+2^{0}\right)^{2}} \\
= & 2^{2(n+1)}+2^{n+2}\left(2^{n}+2^{n-1}+\cdots+2^{0}\right)+\underline{2^{2 n+1}+2^{2 n} \cdots+2^{n+2}+2^{0}} \text { by }(7) \\
= & \left(2^{2(n+1)}+2^{2(n+1)}\right)+\left(2^{2 n+1}+\cdots+2^{n+2}\right)+\left(2^{2 n+1}+\cdots+2^{n+2}\right)+2^{0} \\
= & 2^{2(n+1)+1}+2^{2(n+1)}+\cdots+2^{(n+1)+2}+2^{0} \tag{8}
\end{array}
$$

Based on the facts that Equation 1 holds, and that for all $n=0,1,2,3, \ldots$, if Equation 7 holds then Equation 8 holds, we can justly conclude that our conjecture that for all $n=0,1,2,3, \ldots$ Equation 7 holds, is true. This proves our Lemma. Then the Proposition follows.

