
Who’s Complement?

Li Yue
JetBrains Research

Saint Petersburg, Russia
li.yue@jetbrains.com

March 10, 2022

The modern way to compute the two’s complement of a binary integer is
to invert all its bits and then add 1 to the least significant bit (LSB) (e.g., the
two’s complement of 0010 is 1110, that is, from 0010 to 1101 and then to 1110).
But what does this have to do with getting a complement w.r.t. two?

1 The Syntactic-Semantic Parallel Domains

The key is that we think in two parallel domains : the syntactic domain and
the semantic domain. The semantic domain Q is rational numbers1 such as
−1.01 (minus one and a quarter), 0.11 (three quarters) and 10.00 (two) and
their sums such as (−1.01) + 10.00 = 0.11 and (−1.00) + (−0.11) = (−1.11).
The syntactic domain W is fixed-length (say, three-bit) binary words such as
001 and 111 and their sums such as 001 +′ 111 = 000 (the last carry bit is lost)
and 010+′ 101 = 111 — note that we use + for addition in the semantic domain
and +′ for addition in the syntactic domain. Entities in the syntactic domain
are given interpretations in terms of entities in the semantic domain.

The diagrams2 below highlight the syntactic-semantic distinction.

Q×Q Q

W ×W W

+

(f,f) f

+′

Q×Q Q

W ×W W

+

+′
(f−1,f−1) f−1

The mapping f is called representation and its inverse f−1 is interpretation.
The particular choice for f is left unspecified. In practice f could be fixed-
point or floating-point, unsigned or signed and in the last case sign-magnitude
or two’s complement, or whatever useful scheme of representation. The idea
is the agreement between “sum then represent” and “represent then sum”; or
equivalently, between “interpret then sum” and “sum then interpret”.

1We use binary notation for convenience; also note that if the semantic domain becomes
R — the real numbers, our discussion would be very different.

2Strictly, these diagrams do not commute unless the objects are further refined.

1

2 Complements

We distinguish the complement operation in the semantic domain from that in
the syntactic domain.

2.1 Semantic Complement: N’s Complement

The complement Cn(m) of a number m ∈ Q w.r.t. a number n ∈ Q is defined
(n−m) ∈ Q; we call n−m the n’s complement of m. For example, C2(1.4) = 0.6
— the two’s complement of 1.4 is 0.6; C13(6) = 7 — the thirteen’s complement
of six is seven.

2.2 Syntactic Complement: Low’s Complement

For any n′ ∈ W , we define C(n′) as the word in W obtained by flipping all 1’s
and 0’s in n′ and then add 1 bit to the LSB; e.g. C(000) = 000, C(111) = 001
and C(010) = 110. We call C the low’s complement operation because n′ and
C(n′) sum to the word of pure 0’s (0—low, 1—high). Traditionally C is called
two’s complement, but this could be confusing if we are detached from the
historical context.

3 Historical Context

A group of researchers in the 1950s were developing a binary circuit computer3

and they were focusing on computation with magnitudes no more than 1; two’s
complement was then proposed for representing numbers in the range Q2 =
[−1, 1) ⊆ Q. For example, the positive number 0.10 ∈ Q2 is represented as
010 ∈ W by setting the sign bit (underlined) to 0, followed by its magnitude
(0.)10; the negative number −0.01 ∈ Q2 is represented as 111 ∈ W by setting
the sign bit to 1, followed by the one’s complement (0.)11 of its magnitude
(0.)01; in both cases the binary point is assumed to the right of the sign bit
when interpreting a word.

If a binary point (.) is used instead of an underline () to delimit the sign bit
from the significant bits in a word, the notation of the word (e.g., 010→ 0.10 ∈
W) that represents a positive number (e.g., 0.10 ∈ Q2) would coincide with the
notation of the number being represented (e.g., 0.10 ∈ Q2); the notation of the
word (e.g., 111→ 1.11 ∈W) that represents a negative number would coincide
with the notation (e.g., 1.11 ∈ Q2) of the two’s complement of the magnitude
(e.g., 0.01 ∈ Q2) of the number (e.g., −0.01 ∈ Q2) being represented.

4 Conclusion

Consider the particular low’s complement operation

C(00001001) = 11110111

We are taking one’s complement if we have .00001001 and .11110111 in mind;
we are taking two’s complment if we have 0.0001001 and 1.1110111 in mind;

3See, e.g. Arithemtic Operations in a Binary Computer, Robert F. Shaw, 1950. This
article is available from Computer Arithmetic - Volumn I, Earl E. Swartzlander (ed.), 2014.

2

four’s complement if we have 00.001001 and 11.110111 in mind, and so on.
When we apply the low’s complement operation C on a word, which number’s
complement we get? For historical reasons, we call it two’s complement; but
actually it is up to where we lay the binary point. Put to the left of the first
bit, one’s; to the left of the 2nd bit, two’s; 3rd, four’s; 4th, eight’s, etc.

Therefore for operation on memory words (in the syntactic domain) we
should use the term low’s complement, and preserve one/two/four/etc’s com-
plement for use only in the semantic domain.

Appendices

What happens when intuitively the sum of two intergers (both in two’s comple-
ment form) are out of the range ? And how this situation is tackled ? What we
should expect from two’s complement addition ?

A Addition of Two’s Complement Numbers

Table 1 shows what to expect from two’s complement addition (assuming word
length three without loss of generality). We see that adding a positive num-
ber with a negative number always results in a correct answer; if adding two
positives and the result is positive, the result is correct, otherwise incorrect;
similarly, adding two negatives if the result is negative then it is correct, other-
wise incorrect. Therefore we have a simple rule to decide if the addition result
is correct. In practise, usually the imperfection of two’s complement is tolerated
for its benefit, and moreover, exactly three quarters of the answers are correct
and the correctness is decidable.

0.00 0.01 0.10 0.11 1.00 1.01 1.10 1.11

0.00 0.00 0.01 0.10 0.11 1.00 1.01 1.10 1.11
0.01 0.01 0.10 0.11 1.00 1.01 1.10 1.11 0.00
0.10 0.10 0.11 1.00 1.01 1.10 1.11 0.00 0.01
0.11 0.11 1.00 1.01 1.10 1.11 0.00 0.01 0.10

1.00 1.00 1.01 1.10 1.11 0.00 0.01 0.10 0.11
1.01 1.01 1.10 1.11 0.00 0.01 0.10 0.11 1.00
1.10 1.10 1.11 0.00 0.01 0.10 0.11 1.00 1.01
1.11 1.11 0.00 0.01 0.10 0.11 1.00 1.01 1.10

Table 1: Sum of 3-bit signed fixed-point numbers using the standard binary
adder. The binary point is located to the left of the bit that is the coefficient
of 2−1. The numbers assume two’s complement interpretation. Results in red
are incorrect. Results in green are correct.

Table 2 exhausts the possibilities of two’s complement addition using three-
bit word length. This explains how the incorrect answers are produced: the
correct answer does not have a representation under the choice of word length.

3

n1 n2 n1 + n2 n′1 n′2 n′1 +′ n′2 (n1 + n2)′

0.00 -1.00 -1.00 0.00 1.00 1.00 1.00
-0.11 -0.11 1.01 1.01 1.01
-0.10 -0.10 1.10 1.10 1.10
-0.01 -0.01 1.11 1.11 1.11
0.00 0.00 0.00 0.00 0.00
0.01 0.01 0.01 0.01 0.01
0.10 0.10 0.10 0.10 0.10
0.11 0.11 0.11 0.11 0.11

0.01 -1.00 -0.11 0.01 1.00 1.01 1.01
-0.11 -0.10 1.01 1.10 1.10
-0.10 -0.01 1.10 1.11 1.11
-0.01 0.00 1.11 0.00 0.00
0.01 0.10 0.01 0.10 0.10
0.10 0.11 0.10 0.11 0.11
0.11 1.00 0.11 1.00 -

-0.01 -1.00 -1.01 1.11 1.00 0.11 -
-0.11 -1.00 1.01 1.00 1.00
-0.10 -0.11 1.10 1.01 1.01
-0.01 -0.10 1.11 1.10 1.10
0.10 0.01 0.10 0.01 0.01
0.11 0.10 0.11 0.10 0.10

0.10 -1.00 -0.10 0.10 1.00 1.10 1.10
-0.11 -0.01 1.01 1.11 1.11
-0.10 0.00 1.10 0.00 0.00
0.10 1.00 0.10 1.00 -
0.11 1.01 0.11 1.01 -

-0.10 -1.00 -1.10 1.10 1.00 0.10 -
-0.11 -1.01 1.01 0.11 -
-0.10 -1.00 1.10 1.00 1.00
0.11 0.01 0.11 0.01 0.01

0.11 -1.00 -0.01 0.11 1.00 1.11 1.11
-0.11 0.00 1.01 0.00 0.00
0.11 1.10 0.11 1.10 -

-0.11 -1.00 -1.11 1.01 1.00 0.01 -
-0.11 -1.10 1.01 0.10 -

-1.00 -1.00 -10.00 1.00 1.00 0.00 -

Table 2: Comparing intuitive addition and two’s complement addition, for 3-bit
signed fixed-point numbers. n′ means to take two’s complement representation
of n.

B Unsigned Numbers and One’s Complement

We want to represent numbers in the range Q1 = [0, 1) ⊆ Q. For example,
0.11 ∈ Q1 is represented as 110 ∈W by removing the prefix ”0.” and pad zeros
(or drop digits) in the end to fill the word length; inversely, a word is interpreted
by setting a binary point to the left of the first significant bit; for example, to
interprete 101 ∈ W , we assume a binary point to the left of the MSB, and we

4

get .101 ∈ Q1, which is a half with one eighth.
We use fu : Q1 7→ W to denote unsigned representation of number’s in Q1;

its inverse is denoted fu
−1. Note that word length of W is unspecified as long

as it is fixed uniformly for all elements of W .

Proposition B.1. The diagrams does not commute.

Q1 Q1

W W

C1

fu fu

C

Q1 Q1

W W

C1

C

fu
−1 fu

−1

Proof. We first discuss about the diagram on the left. Assume the word length
is i. A typical n ∈ Q1 has the shape

n = 0 . b1 b2 b3 · · · bi bi+1 bi+2 · · · bi+j

Define 1̄ = 0 and 0̄ = 1, we have

C1(n) = 0 . b̄1 b̄2 b̄3 · · · b̄i b̄i+1 b̄i+2 · · · b̄i+j ↑

where the up-arrow ↑ denotes adding 1 bit to the LSB b̄i+j . Then (fu ◦ C1)(n)
is collecting the first i bits to the right of the binary point in C1(n).

On the other hand,

(C ◦ fu)(n) = b̄1 b̄2 b̄3 · · · b̄i ↑

We argue that (fu ◦ C1)(n) and (C ◦ fu)(n) are equal only when the effect
of ↑ in the expression of C1(1) crosses the boundary between the i and i + 1
bit; that means all bi+1, . . . , bi+j must be zero — this is in general not the case,
therefore the diagram does not commute.

But if we replace Q1 by Q1 − X where X collects those in Q1 whose bit-
length to the right of the binay point is longer than the word length of W , the
new diagram would commute.

For the second diagram, note that

(fu
−1 ◦ C)(000) = 0.00

but
(C1 ◦ fu−1)(000) = 1.00

Therefore the diagram does not commute. But if we replace W by W − {000},
the new diagram would commute.

5

